Pages


Tampilkan postingan dengan label Reactor. Tampilkan semua postingan
Tampilkan postingan dengan label Reactor. Tampilkan semua postingan

Reaktor Nuklir AP1000 China, Pertama di Dunia

Pembangunan pembangkit listrik tenaga nuklir pertama kali di dunia yang berbasis pada teknologi reaktor AP1000 dari U.S. Westinghouse Electric diumumkan oleh China pada bulan April 2009 kemarin. Pembangunan yang dimulai dengan menuangkan 5200 meter kubik semen di pulau nuklir Sanmen provinsi Zhejiang. Dua unit plant akan dibangun dalam tiga tahap, dan reaktor pertama akan memulai operasi pada tahun 2013 kemudian dilanjutkan reaktor kedua pada 2014.
Selama berlangsungnya pengerjaan untuk dua unit reaktor tersebut, China juga akan mulai membangun dua lagi reaktor nuknir berbasis AP1000 di lokasi Haiyang provinsi Shandong, sebagaimana kontrak yang telah ditandatangani antara Westinghouse dengan State Nuclear Power Technology Pwer Corp (SNPTC) China.
Diluar empat unit reaktor yang sedang dibangun, sekarang negara tersebut telah memiliki total 11 unit pembangkit listrik tenaga nuklir yang sedang beroperasi. Tiga unit reakor diantaranya menggunakan teknologi dalam negri, dua unit menggunakan teknologi Russia, empat unit dengan teknologi dari Perancis dan sisanya menggunakan desain dari Kanada. Atas dasar pemenuhan kebutuhan dari permintaan yang terus meningkan dan kekhawatiran dari isu pemanasan global akhir-akhir ini, China sudah mulai mempercepat pembagunan plant nuklirnya hingga mencapai 60 GW pada tahun 2020.
Bagan reaktor AP1000
Walaupun negara tersebut menggunakan berbagai macam desain reaktor nuklir, AP1000 akan menjadi pemain utama dalam desain reaknot ini, menurut SNPTC. Empat buah reaktor yang sedang dibangun sekarang, menggunakan “self-reliance program” dari China sendiri. Hal ini berarti negara tersebut sepenuhnya mempercayakan teknologi AP1000 berdasarkan kemajuan teknologi dalam negri. Untuk lebih jauh lagi, China akan membangun reaktor AP1000 secara masal atas kuasa SNPTC. Untuk pembangunan di pulau Sanmen misalnya, SNPTC menharapkan pembangunan enam unit lagi reaktor nuklir.
Penuangan semen di Sanmen untuk reaktor China generasi ketiga juga menjadi batu loncatan utama bagi Westinghouse Electric. Toshiba Corp. (dibeli oleh Westnghouse pada tahun 2006) yang menjadi suplier reaktor pressurezed water pertama di dunia pada tahun 1957 untuk plant di Shippingport. Pa., dan sekarang teknologi perusahaan ini menjadi basis hampir setengah dari jumlah pembangkit listrik tenaga nuklir di dunia, termasuk penggunaan 60 persen teknologinya di U.S. Akan tetapi benerasi baru dari reaktor tersebut tidak terlihat sesukses generasi sebelumnya. Dan AP1000 hanyalah satu-satunya desain yang disertifikasi oleh Komisi Peraturan Nuklir (NRC) U.S. Faktanya Empat buah reaktor AP1000 tahun 2007 China seharga 5,3 Milyar U.S. Dollar merupakan reaktor pertama dari Westinghouse sejak tahun 1987.
Perhatian kepada desain AP1000 kini mulai meningkat. Di U.S., Westinghouse dengan AP1000nya telah menjadi teknologi pilihan dari sekitar 14 unit plant baru, termasuk enam unit yang telah ditandatangani kontraknya oleh perusahaan tersebut. Dilain pihak, UK yang persiapan plant nuklir generasi barunya menarik minat berbagai perusahaan di seluruh Eropa, kini sedang mengurus sertifikasi hanya untuk dua desain reaktor barunya. Yang pertama UK-EPR yang didesain oleh AREVA dan Electricite de France; dan desain lainnya menggunakan AP1000.
Sumber:
Power Magazine, vol.153 2009

Reaktor Nuklir di Fukushima Pasca Gempa



In graphics: What went wrong at Fukushima?




How the problems unfolded

a. A magnitude 8.9 earthquake hit northern Japan on Friday 11 March and the nuclear reactors in operation at Fukushima Daiichi were shut down. Control rods were activated to stop the nuclear reactions that generate power.

b. However, power supplies were affected by the quake and resulting tsunami, meaning the cooling systems, which stop the fuel in the core heating up to unsafe levels, failed. Cooling is still needed even after a reactor is shut down because the fuel continues to give off enormous heat.

c. The lack of power meant water stopped circulating and began to boil, creating steam. As the water began to boil away, it is believed the rods were exposed to air above the water line, causing them to heat further, melting or splitting their zirconium alloy casings.

d. As the zirconium alloy reacted with the steam, it created hydrogen gas, which is highly volatile. As engineers tried to vent this gas outside the containment chamber to relieve the pressure, the gas exploded, blowing off the roof of the outer building.

e. Officials are now swamping the units with seawater as an emergency coolant, and are using boronic acid, which hampers nuclear reactions.


Beragam jenis teknologi PLTU milik Jepang saat ini


Reaktor Katalitik Aliran Bolak-Balik (Reverse Flow Reactor)

Tentunya mahasiswa Teknik Kimia sudah cukup sering mendengar berbagai jenis reaktor dalam mata kuliah Teknik Kimia, mulai dari jenis plug flow reactor, continuous stirred tank reactor, dan lain-lain. Penelitian akhir-akhir ini mulai menganalisis penggunaan salah satu tipe reaktor yang unik, yaitu reaktor katalitik aliran bolak-balik. Reaktor katalitik aliran bolak-balik (Reverse Flow Reactor/RFR) merupakan sebuah reaktor unggun diam (fixed bed) yang khusus. Kekhasan dari jenis reaktor ini berada pada arah alirannya saat melalui reaktor. Aliran fluida yang melalui reaktor diubah arahnya secara periodik dalam selang waktu tertentu. Waktu periodik pergantian arah aliran ini dikenal dengan nama waktu ubah / switching time (Budhi, 2005).
Reaktor katalitik aliran bolak-balik (Reverse Flow Reactor/RFR) memiliki 5 bagian utama, yaitu 2 zona komponen inert, 2 zona komponen katalis, dan 1 zona penukar panas. Pembalikan arah aliran dalam RFR bertujuan untuk menjaga keberadaan zona panas dalam reaktor. Komponen yang masuk ke dalam RFR dengan suhu yang rendah akan dipanaskan oleh unggun inert hingga mencapai temperatur aktif reaksi. Unggun inert menyimpan panas dari hasil reaksi eksoterm sebelumnya, sebelum mengalami pergantian arah aliran. Ujung bagian keluaran RFR, produk gas panas hasil reaksi eksoterm mentransferkan panasnya ke unggun inert yang temperaturnya lebih rendah. Bagian masukan dan keluaran reaktor berupa komponen unggun inert berfungsi sebagai alat penukar panas (recuperative). Sebelum zona panas hasil reaksi eksoterm terdorong keluar dari reaktor karena aliran umpan yang dingin, aliran umpan dibalik ke arah sebaliknya (Effendi dan Kristianto, 2008).
Prinsip utama dari reaktor katalitik aliran bolak-balik dapat dilihat pada gambar di bawah ini Gambar tersebut menjelaskan perbandingan sistem kerja pada reaktor biasa dengan forward flow dan reverse flow. Waktu ubah / switching time akan menentukan pergantian mode operasi dari forward flow menjadi reverse flow (Salomons dkk., 2004).

Reverse Flow Reactor
Konsep RFR (a) forward flow dan (b) reverse flow (Wibisono dan Rimbualam, 2009)
Keunggulan Reaktor Katalitik Aliran Bolak-Balik:
1. Efisiensi energi tinggi
Panas yang tersimpan dalam reaktor dapat digunakan untuk pemanasan awal umpan. Apabila kondisi ototermal dapat dicapai, maka sistem reaktor tidak lagi memerlukan preheater untuk pemanasan awal umpan sehingga prosesnya memiliki efisiensi energi yang tinggi (Wibisono dan Rimbualam, 2009).
2. Konversi dan selektivitas lebih tinggi
Penggunaan RFR akan mempengaruhi luas permukaan katalis yang digunakan. Dengan RFR, katalis dapat dioperasikan pada temperatur dan komposisi umpan sedemikian rupa sehingga diperoleh konversi dan selektivitas maksimum. Dibandingkan dengan reaktor aliran sekali lewat, RFR memberikan selektivitas dan konversi yang lebih baik (Boreskov dan Matros, 1983).
3. Dinamika katalis
RFR dapat digunakan untuk menurunkan titik panas (hot spot) pada katalis dan mendapatkan distribusi temperatur yang diinginkan sepanjang bed (Ferreira dkk., 1999). Hal ini mengakibatkan katalis relatif tidak mudah jenuh.
4. Mengurangi biaya investasi
Konstruksi yang lebih efisien dalam penggunaan energi dibandingkan sistem reaktor konvensional dapat mengurangi biaya investasi yang diperlukan (Wibisono dan Rimbualam, 2009).

Daftar Pustaka :
1. Borekov, G.K.; Matros, Yu.Sh., “Unsteady State Performance of Heterogeneous Catalytic Reactor”, Catalyst Review: Science and Engineering 25, 1983.
2. Budhi, Y.W.,”Reverse Flow Reactor Operation for Control of Catalyst Surface Coverage”, Disertasi Doktor, Technische Universiteit Eindhoven, 2005.
3. Effendi, P.G.; Kristianto, J., “Reverse Flow Reactor untuk Mengkonversikan Tar dalam Gas Produser”, Laporan Penelitian S1 Teknik Kimia, ITB, 2008.
4. Ferreira, R.Q.; Costa, C.A.; Masetti, S., “Reverse Flow Reactor for a Selective Oxidation Process”, Chemical Engineering Science 54, 1999.
5. Salomons, S.; Hayes, R. E; Poirier, M.; Sapoundjiev, H., “Modelling a Reverse Flow Reactor for the Catalytic Combustion of Fugitive Methane Emissions”, Computers and Chemical Engineering 28, 1599–1610, 2004.
6. Wibisono, F.; Rimbualam, H. G., “Dinamika Reverse Flow Reactor untuk Oksidasi Emisi Gas Metana Encer”, Laporan Penelitian S1 Teknik Kimia, ITB, 2009.
 
Copyright © Chemical Engineer. Design by Best Website Design
Buy Traffic and Templates On Sales